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High performance control design for a flexible space structure is challenging since high
fidelity plant models are difficult to obtain a priori. Uncertainty in the control design
models typically require a very robust, low performance control design which must be tuned
on-orbit to achieve the required performance. Closed loop system identification is often
required to obtain a multivariable open loop plant model based on closed-loop response
data. In order to provide an accurate initial plant model to guarantee convergence for
standard local optimization methods, this paper presents a global parameter optimization
method using genetic algorithms. A minimal representation of the state space dynamics is
employed to mitigate the non-uniqueness and over-parameterization of general state space
realizations. This control-relevant system identification procedure stresses the joint nature
of the system identification and control design problem by seeking to obtain a model that
minimizes the difference between the predicted and actual closed-loop performance.

I. Introduction

Implicit in the design of high performance control systems is the availability of an accurate model of
the system to be controlled. System identification methods are typically directed toward obtaining accu-
rate nominal models of an open loop system with bounds on the associated uncertainty. Recognizing this
dependence on accurate nominal design models, robust control theory has been developed to accommodate
modeling errors. Recently attention has been drawn to the fact that the issues of system identification and
control design must be treated as mutually dependent.1 Since the magnitude and spectrum of excitation
forces are controller dependent, an appropriate model for control design cannot be determined independent
of the controller. Since the model that is most appropriate depends on the control design, the open-loop
response of a model is not sufficient to indicate the fidelity of the model for control design. A better approach
from a closed loop performance perspective is closed-loop system identification, that is the identification of
the open-loop plant given closed-loop response data and knowledge of the compensator dynamics.

An approach to iterative closed-loop system identification and controller redesign is given by Liu and
Skelton where a state space model is estimated using the q-Markov Cover algorithm and a controller is
designed using the Output Variance Constraint algorithm.2 q-Markov Cover theory describes all realizations
of a linear system which match the first q Markov parameters and covariance parameters of the true system
generated by pulse responses. First the entire closed-loop system is estimated and then using knowledge of the
compensator dynamics, the plant is extracted. However, the identified open-loop plant has dimension equal
to the controller dimension plus the dimension of the identified closed-loop plant. Model order reduction is
used to remove the superfluous states. A similar approach is to formulate a method which first obtains the
closed-loop Markov parameters and then the open-loop Markov parameters are recovered.3 A discrete time
state space realization is then obtained from the Markov parameters.

A classical approach to parameter estimation which has been extended to closed-loop system identification
is the prediction error approach.4 This optimization method estimates the parameters of a linear system by
minimizing the squared sum of the errors between the actual measurements and the predicted measurements.
Recent work extended the prediction error method to closed-loop identification for multivariable systems.5

Building on a method developed for estimation of the parameters of an open-loop system in canonical form
∗TD54/Guidance, Navigation, and Control Systems Group, Associate Fellow AIAA.
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from open-loop data, a new procedure for closed-loop system identification was developed and demonstrated
therein. As with all local optimization methods that utilize inverted Hessians and gradients for searching,
the optimization method was found to be severely limited by the accuracy of the initial guess. In this paper,
a global optimization step utilizing genetic algorithms is introduced to determine a coarse optimal solution
to initialize the local optimization process previously developed.5

II. Closed Loop System Identification

The traditional approach to control design is to obtain a nominal model of the open loop plant, P̂ , which is
the basis for control design. Since P̂ is an approximation of the true plant, P , the model based compensator,
CP̂ , must provide a certain level of robust stability (i.e., CP̂ must internally stabilize P̂ and P ). In the
system identification process an attempt is made to bound the model error ‖ P − P̂ ‖, which determines the
amount of robustness required by the control design. It is also desirable that the controller provide some
level of performance robustness; that is the achievable performance should not differ significantly from the
nominal design performance.

An upper bound on achievable performance is6

‖ J(P, CP̂ ) ‖≤
‖ J(P̂ , CP̂ ) ‖ + ‖ J(P, CP̂ ) − J(P̂ , CP̂ ) ‖ (1)

where

‖ J(P, CP̂ ) ‖ : the achieved performance
‖ J(P̂ , CP̂ ) ‖ : the nominal performance, and
‖ J(P, CP̂ ) − J(P̂ , CP̂ ) ‖ : the performance differential.

The choice of a specific performance metric J and norm ‖ ∗ ‖ is determined by the control design methodology.
High performance control design for a flexible space structure is especially challenging since high fidelity

nominal plant models are difficult to obtain. To achieve high performance requires:

• high nominal performance
(⇔‖ J(P̂ , CP̂ ) ‖ small)

• robust performance
(⇔‖ J(P, CP̂ ) − J(P̂ , CP̂ ) ‖�‖ J(P̂ , CP̂ ) ‖)

The second condition is actually a requirement on model fidelity and indicates that the nominal closed-loop
system model must closely approximate the actual closed-loop system performance when the compensator
CP̂ is used. Therefore, the fitness of the nominal model is a function of the compensator and must be
judged from a closed-loop perspective. Interestingly, good fitness is not guaranteed by good open-loop
model matching nor is it precluded by poor open-loop model matching.1

The closed-loop system identification process may be considered as one step of an iterative closed-loop
system identification and control design procedure. It is assumed that a moderately accurate dynamic model
of the system to be controlled is available for the initial low authority controller design. However, this initial
design model is not of sufficient fidelity to permit high authority control design. The objective of the closed-
loop system identification procedure is to refine the initial control design model based on closed-loop response
data.

In the development of a closed-loop system identification method, consideration must be given to the
non-uniqueness of the state space realization of the system dynamics. Although there are an infinite number
of equivalent state space realizations for a system, a system with n states, nu inputs, and ny outputs can be
uniquely expressed with a minimum of n(nu + ny) parameters. In order to circumvent the non-uniqueness
problem, this paper will implement an approach which realizes the open-loop system matrices in a unique,
minimal form and directly identifies the canonical parameters from closed-loop response data.

Proper selection of the objectives of system identification and control design further stresses the joint
nature of the identification and control problem. The objective of the closed-loop identification procedure
employed herein is to obtain a model P̂ that minimizes the performance differential ‖ T − T̂ ‖2 where T
is the actual closed-loop system and T̂ is the identified closed-loop system. This system norm cannot be
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evaluated since T is not known. However the actual and predicted closed-loop measurements are known and
an equivalent objective is to minimize the prediction error of the closed-loop system, ‖ y − ŷ ‖2. The actual
and predicted closed-loop system outputs, y and ŷ, respectively, are determined for the same set of inputs.
The least squares cost functional for control dependent closed-loop system identification then is

J =
1
2

∫ tf

0

(y − ŷ)T W (y − ŷ)dt (2)

where W is a constant matrix chosen to weight the relative importance of different measurement outputs.
The control objective is matched with the identification objective by designing the controller to minimize
the H2 criterion ‖ T̂ ‖2.

III. State Space Canonical Realization

A state space representation of the open loop plant may be given by:

ż = Fz + Gu, z(0) = z0 (3)
ŷ = Hz (4)

The objective is to identify some F , G, H, and z0 which represents the dynamics of the unknown system based
on knowledge of the inputs, u(t), and noisy measurements, y(t). An estimate of the unknown parameters
may be obtained by minimizing the cost functional given in Eq. 2. Directly minimizing J for the general
state space realization results in a nonlinear optimization process, but in the absence of measurement noise,
a linear formulation may be obtained. Recognizing that for a perfect model the output in Eq. 4 will exactly
equal the measurements and y − ŷ = 0, this difference can be fed back to the model with arbitrary gains K
and M according to

ż = Fz + Gu + K(y −Hz) (5)
ŷ = Hz + M(y −Hz) (6)

which can also be written

ż = FNz + GNu + δGu + Ky (7)
z(0) = zN0 + δz0 (8)

ŷ = HNz + My (9)

by use of the definitions

FN = F −KH (10)
GN = G − δG (11)
HN = (I −M)H (12)
zN0 = z0 − δz0 (13)

The elements of (F −KH) and (I −M)H may be chosen independently of the unknown elements of F and
H by using a maximum of n ∗ny parameters in K and M when the structure of the system is in a specific
form. As a consequence, FN , GN , HN , and zN0 are chosen and the unknown parameters are contained in
K, M, δG, and δz0. The vector of uncertain parameters to be estimated is

γ =




vec(K)
vec(δG)
vec(M)
vec(δz0)


 (14)

A canonical realization of the system dynamics is necessary so that the unknown parameters in F are
coefficients of measured states. This paper utilizes the observer canonical form.7 It can be shown that if
the plant dimension is an even multiple of the number of outputs and the first n rows of the observability
matrix are linearly independent, then the realization is canonical and H will consist only of ones and zeros.
Otherwise, some elements of H will be included as unknown parameters in the estimation procedure.
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A. Closed-Loop System Realization

A similar approach may be taken for identification of the closed-loop system parameters by expressing the
plant in observer canonical form and exploiting the structure of the closed-loop matrices. For the plant given
by

ẋ = Ax + B1w + B2u (15)
y = C2x (16)

and a dynamic compensator

ẋc = Acxc + Bcy (17)
u = −Ccxc (18)

the resulting closed-loop dynamics are[
ẋ

ẋc

]
=

[
A −B2Cc

BcC2 Ac

][
x

xc

]

+

[
B1 B2

0 0

][
w

u

]
(19)

y =

[
C2 0
0 I

] [
x

xc

]
(20)

If the plant (A, B2, C2) matrices are expressed in observer form, then the C2 matrix consists of ones and
zeros and the unknown parameters in A are coefficients of the measured transformed states. (As stated
earlier, in some cases the transformation may not be canonical resulting in the C2 matrix having additional
nonzero elements, but these parameters can be estimated as well.) Comparison of Eqs. 3 - 4 with Eqs. 19 -
20 indicates that

F =

[
A −B2Cc

BcC2 Ac

]
(21)

G =

[
B1 B2

0 0

]
(22)

H =

[
C2 0
0 I

]
(23)

Since the only unknowns in F and G are the plant matrices A, B1, and B2, the unknown parameter
matrices are defined as

K =

[
K11 −K12Cc

0 0

]
(24)

δG =

[
δG11 δG12

0 0

]
(25)

In the case of a true canonical form for the plant, H is completely known. Compatibility of K and H
with F requires H to have the form given by Eq. 23 which implies that the compensator state vector
must be included in the measurement vector used in the identification process. Note that K11 corresponds
to the unknown parameters in A, K12 corresponds to the unknown parameters in B2, δG11 corresponds to
the unknown parameters in B1, and δG12 = K12. Hence for closed-loop system identification, the unknown
parameter vector becomes:

γ =




vec(K11)
vec(K12)
vec(δG11)
vec(δz0)


 (26)
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Local optimization methods have been shown to be quite effective for parameter estimation when a good
initial estimate is available.5 However in the absence of good initial estimates, these methods tend to be
unsuitable due to numerical sensitivity. Local optimization methods often require the inversion of a large
data matrix which tends to be ill-conditioned. Ensuring full-rank of the data matrix requires sufficiently rich
excitation in all of the modes to be identified which is often quite difficult in practice due to limitations such as
sensor and actuator dynamics. Methods which do not involve matrix inversion such as genetic algorithms have
potential for the closed-loop parameter estimation. An additional benefit of genetic algorithms is that the
system identification can be operating in the background as part of an autonomous identification/controller
tuning process. Hence this paper presents a genetic algorithm for the initial (coarse, global) estimation step
with the objective of providing a sufficiently accurate initial guess for the final (local) optimization step using
the equation error method.

IV. Genetic Algorithms

Scientists and engineers often borrow concepts from nature to motivate and inform the design process.
One such innovation is the computational field of genetic algorithms. Genetic algorithms have seen increased
attention over the last two decades in a wide range of engineering applications from aircraft design to
operations research. Genetic algorithms are mathematical methods for global search and optimization that
are based on the mechanics of natural selection and the science of genetics.8

In nature, natural selection operates on biological systems to determine the fittest species for a given
ecological niche. The fittest species tend to survive and propagate the genetic information that rendered the
species most fit. In this sense, natural selection has a stabilizing effect that tends to increase the presence of
the fittest species through subsequent generations by selecting the fittest members for propagation. Mating
within the population also tends to mix the genetic information of the population such that beneficial traits
of parents can be combined to improve the fitness of the offspring. Hence the operations of selection and
reproduction tend to preserve the fittest members of a species and in some instances improve the fitness
of individuals within the population through genetic mixing. However selection and reproduction both
operate on a fixed gene pool with fixed genetic information. Truly innovative biological designs require the
introduction of new biological information.

The only known natural mechanism for introducing new biological information is mutation, which es-
sentially modifies the genetic code of a species. Mutations are random, relatively rare, and almost always
harmful to the species. However the exceptional beneficial mutation introduces new genetic information
to the gene pool which may lead to more fit members to be selected and reproduced. This paradigm of
biological optimization has been fruitfully applied to engineering optimization methods in the general field
of evolutionary computation and genetic algorithms in particular.

At the cellular level, biological information is coded in one or more chromosomes which serve to describe
the function and construction of the biological system. Chromosomes are comprised of strings of DNA
which can be divided into substrings called genes. Each gene is a functional block of DNA that encodes the
biochemical workhorse of the cell – protein molecules. The genetic code is simply a mapping from DNA
strings to individual proteins and the genome is an organism’s set of genes that comprises the set of biological
characteristics or traits of the organism. So a trait (such as hair color) is encoded by a gene and the different
possible realizations of that trait (such as brown, black, etc.) are called alleles.

To carry over the biological paradigm as a computational paradigm, the chromosome may be thought of as
a candidate solution to the optimization problem. The chromosome is a string formed by the concatenation
of individual genes, or parameters to be optimized. Alleles correspond to the values that may be taken by the
parameter (either one or zero in a binary representation, a real number in a floating point representation).

Genetic algorithms consist of coding a population of candidate solutions and then operating on the
population to determine a new population for the next generation. Several generations are typically iterated
upon until the population converges to its most fit set of solutions. The operators for one generation typically
include selection, recombination, and mutation.

Selection implements the operation of natural selection by evaluating the “fitness” of each member (from
the cost functional to be optimized) and giving more copies of the better solutions in the population for the
next generation. Selection takes many forms such as roulette wheel selection, where the probability of an
individual being propagated to the next generation is weighted by the fitness; tournament selection, where
the random members compete “head to head;” and truncation, where the top “n” members are selected and
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copied multiple times to fill the population for the next generation.
Recombination implements biological reproduction by combining two parents to form two children for the

next generation. Two strings chosen at random are cut at a random location in a gene (for binary encoded
strings) or chromosome (for floating point encoded strings) and the remaining portions of the strings are
swapped. Also known as crossover, this step serves to randomly shuffle the information in the gene pool,
but it does not introduce new information in the gene pool. For example, if every member in a population
has a “1” in the i th string location, then neither reproduction or recombination will produce a “0” in that
location.

The introduction of new information is accomplished through the third operator, mutation. Mutation in
a genetic algorithm is accomplished by randomly altering an allele. For a binary encoding, mutation simply
flips a bit at random locations as a function of the probability of mutation. For a floating point encoded
string, mutation perturbs a random allele is some fashion such as a random variation over some range of
parameter variation. Taken together, these three operators serve to advance the population from generation
to generation in a manner that tends to improve the fitness of either the population as a whole or the best
members of the population.

The next section presents an example application of genetic algorithms to the problem of parameter
estimation for closed loop system identification.

V. System Identification Implementation

Standard local optimization methods typically involve differentiation of an objective function and inver-
sion of matrices that may tend toward ill-conditioning. Genetic algorithms are much simpler to implement
than standard methods because genetic algorithms merely evaluate the objective function. This distinction
also implies that genetic algorithms are better suited for global searches since gradients inherently provide
only local topological information. Clearly the over-parameterization of a general state-space representation
will introduce difficulties for the genetic algorithm search just as it does for standard optimization methods.
Implementing the canonical realization for the closed loop system identification mitigates this difficulty and
permits the genetic algorithm to search for the best set of unknown parameters for the minimal realization.
Hence the objective of the genetic algorithm for closed loop system identification is to determine the plant
parameters which minimizes the error between the predicted and measured outputs as quantified by the
objective function in Eq. 2.

Given an initial closed loop plant described by F0, G0, and H0, the updated plant matrix Fnew may be
given by

Fnew = F0 − ∆F (27)

Since the unknown plant parameters to be estimated are elements of (A, B1, B2), inspection of Eqs. 21 and
10 indicates that

∆F =

[
∆A −∆B2Cc

0 0

]
= KH (28)

With K and H compatibly partitioned as defined in Eqs. 24 and 23, Eq. 28 yields ∆A = K11C2, or

K11 = ∆AC+
2 (29)

where the right inverse (pseudo-inverse) of C2 is given by

C+
2 = CT

2

(
C2C

T
2

)−1
(30)

The variation in A can be treated as a multiplicative percent variation from the initial matrix A0 by the
definition

∆A = ∆A A0 (31)

where ∆A is the matrix
∆A = diag [δAi] , ∀i = 1 : n ∗ p (32)

and the ”diag” notation indicates a diagonal matrix with the elements in brackets along the diagonal. Each
δAi represents the percent uncertainty in the ith uncertain element of the open loop A matrix. Using the
canonical realization in this manner allows us to isolate the individual uncertain elements of the open loop
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plant matrices from within the closed loop realizations as linear multiplicative coefficients. Likewise, Eq. 28
yields

∆B2 Cc = K12CcH22 (33)

For this case where the realization is canonical, H22 is the identity matrix and hence

K12 = ∆B2 = ∆B2 B2,0 (34)

where B2,0 is the initial value of B2 and ∆B2 is a diagonal matrix of percent variations analogous to Eq. 32.
Finally, the updated G plant matrix is given by Eq. 11 which by direct inspection yields

δG11 = ∆B1 = ∆B1 B1,0 (35)

where B1,0 is the initial value of B1 and ∆B1 is a diagonal matrix of percent variations analogous to Eq. 32.
This representation allows the chromosome to be a concatenation of the percent variations of the indi-

vidual uncertain plant parameters. Beginning with a population of chromosomes, each binary chromosome
string is decomposed into substrings, or genes, that represent the percent variation of each plant parameter.
The substrings are decoded into floating point numbers that are the diagonal elements of ∆A, ∆B1 , and
∆B2 . These floating point numbers are then used in Eqs. 29 - 35 to form the parameter vector γ defined
by Eq. 26 (neglecting uncertainty in the initial conditions δz0). Hence each chromosome in the population
is mapped to a corresponding γ from which the closed loop plant matrices are formed. A time response of
the corresponding closed loop plant is compared to the measured time response of the true system and the
fitness of each chromosome in the population is finally determined by Eq. 2.

VI. Application Example

The four disk structural system9 is an excellent example of a flexible space structure and is used herein
as a test case for closed loop system identification using genetic algorithms. The four disk model can be
configured with a rigid body mode and coupled nonminimum phase flexible modes (as a consequence of
noncolocated sensors and actuators). As illustrated in Figure 1, four disks are rigidly attached to a flexible

1 2 3 4

Μ4, θ4Μ3, θ3Μ2, θ2Μ1, θ1

GJ/L

I I I I

GJ/L GJ/L

Figure 1. Four Disk System

axial shaft with control torque applied to selected disks and the angular displacement of selected disks
measured. The equations of motion may be written as

I1θ̈1 + K1(θ1 − θ2) = M1 (36)
I2θ̈2 + K2(θ2 − θ3) − K1(θ1 − θ2) = M2

I3θ̈3 + K3(θ3 − θ4) − K2(θ2 − θ3) = M3

I4θ̈4 − K3(θ3 − θ4) = M4

or
M̄q̈ + K̄q = B̄u (37)
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where the mass matrix is

M̄ =




I1 0 0 0
0 I2 0 0
0 0 I3 0
0 0 0 I4


 (38)

and the stiffness matrix with (GJ/L)i = Ki is given by

K̄ =




K1 −K2 0 0
−K1 K1 + K2 −K2 0

0 −K2 K2 + K3 −K3

0 0 −K3 K3


 (39)

The generalized displacements are the angular displacements of the disks, qT = [θ1 θ2 θ3 θ4], and the input
vector consists of the moments applied to each disk, uT = [M1 M2 M3 M4]. Defining the state vector as
xT = [qT q̇T ] results in the state space formulation

ẋ = Ax + B2u (40)

where

A =

[
0 I

M̄−1K̄ 0

]
B2 =

[
0

M̄−1B̄

]
(41)

Note that Eq. 19 includes an explicit input coefficient matrix, B1, for the disturbance input, w. This
disturbance input typically consists of noise or uncertainties at the plant input and is used as a design
parameter for controller synthesis. In the control design context, the B1 matrix includes the control design
weights or states associated with noise or uncertainty models and does not explicitly model the dynamics of
the flight system. Moreover, rarely is a spacecraft instrumented to directly measure the disturbances even
if the disturbance sources are fully known. Since the disturbance time histories are not measured (required
for system identification), B1 is not included above in Eq. 40. If on-orbit dynamics characterization is
anticipated, then excitation actuators (disturbances) may be included in the system design. But these
actuators can also be used for feedback control as well and as such would be accounted for in the B2 matrix.
Hence, all measured inputs are accounted for in the B2 matrix and the estimation of B1 is not required.
This has the beneficial effect of reducing the number of parameters to estimate and hence reducing the
chromosome length.

For this example, the true plant is described by an identity mass matrix and the stiffness values are
K1 = 25, K2 = 12.5, and K3 = 1. These values result in an open loop system with undamped modes at
0.145 Hz, 0.347 Hz, 0.688 Hz, and 1.156 Hz. A noncollocated sensor/actuator configuration is adopted with
the outputs consisting of the angular displacement of disks three and four while the control torque is applied
to disk one.

Case A
The first case begins with an estimated model that has a 10% error in the stiffness matrix and a 5%

error in the mass matrix. With eight states, one input, and two outputs, the chromosome was a string of
n ∗ (p + m) = 24 parameters encoded as an eight bit integeter. The eight bits mapped into a range of ±10%
for each parameter.

An initial population of 4000 chromosomes was generated with random binary bit strings. In order to
preserve the best member of each generation, an elitist strategy was implemented where the most fit 10%
of the population was directly copied into the subsequent generation. Tournament selection was used with
random pairing of two chromosomes; the probability of crossover was 0.75, and binary mutation occurred
for 50% of the parameters (the probability per bit was 0.0625 with eight bits per parameter). This was an
atypically high probability of mutation because the objective was not to converge the entire population to
the most fit member as in the typical genetic algorithm. For this application, the one most fit member was
sought and a high mutation rate was employed to continually infuse new information content into the gene
pool.

Feasibility of solutions was enforced by checking the closed loop stability for each member of the popula-
tion and rejecting those members that rendered the closed loop unstable. Clearly the difficulty of populating
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the gene pool with feasible plants is a function of the control system. For this reason also a robust controller is
most suitable for closed loop system identification (as described earlier). A low authority LQG controller was
designed for the initial plant and held fixed for the plant estimation phase. In a flight application, the best
plant identified during this step would be used for a controller update. This iterative identification-tuning
process could be repeated until acceptable performance was achieved.

0 50 100 150 200 250 300 350
0

100

200

300

400

500

600

700

800

C
os

t
Generations

Figure 2. Fitness Evolution for Case A

Figure 2 presents the evolution of the gene pool
for 350 generations for two runs. Each run begins
with the same initial erroneous closed loop plant but
with different random initial populations and differ-
ent disturbance time histories excited through the
control actuator. The forty second disturbance in-
put time history is a sum of four random time histo-
ries (with intensities of 0.25, 0.5, 0.75, and 2). The
disturbance input is band limited by a 6th order but-
terworth filter with a break frequency at one-half the
sample frequency of 10 Hz.

Several different criteria can be applied to deter-
mine the suitability of an estimated plant. Fitness
alone is difficult to correlate to absolute model er-
rors because the cost is an integral of the output
error squared over the duration of the time history.
Nor is fitness is an exact basis for comparison be-
tween models since different time histories are used
for different runs. However, because the dynamics
are realized in a canonical set of basis vectors, the
parameter values themselves are equivalent for equivalent models. But determining the significance of an
error in those parameters is not straightforward. Table 1 presents the parameters the true plant, the initial
plant, and the best estimate for two runs (370 generations and 800 generations, respectively). The first eight
rows are elements of the A matrix and the final three are elements of the B1 matrix. Note that in the first
case, the best estimate in terms of fitness was achieved with larger errors in two elements of the A matrix.
In the second case, errors in all elements of the A matrix were improved upon. This is an indirect indication
that not every element of the A matrix contributes equally to the cost and larger error in some parameters
is more acceptable than others. Note that errors in the elements of B1 tend to have less effect on the cost
than errors in A.

True Init. Est. 1 Est. 2 Init. % error Est. 1 % error Est. 2 % error
-625.00 -685.94 -639.40 -629.72 9.75 2.30 0.76
-62.50 -65.48 -62.32 -62.37 4.76 -0.29 -0.21
25.00 27.44 25.55 24.80 9.75 2.22 -0.79
1.00 1.05 1.09 1.02 4.76 8.58 2.26

156.25 171.49 169.27 163.62 9.75 8.33 4.71
156.25 163.69 168.25 162.73 4.76 7.68 4.15
-12.50 -13.72 -12.98 -12.66 9.75 3.85 1.27
-14.50 -15.19 -14.86 -14.59 4.76 2.50 0.61
37.50 37.42 37.66 37.22 -0.23 0.44 -0.74
1.00 0.95 1.01 1.01 -4.76 1.03 -0.39
-1.00 -1.00 -1.01 -0.97 -0.23 0.67 -3.24

Table 1. True, Initial, and Estimated Parameters for Case A

Another means of comparison is the eigenvalues of the open loop plants. The eigenvalues have a more
direct effect on the time response of the system than do the individual elements of the plant matrices and as
such are a valuable basis for comparison. Figure 3 shows the very significant reduction in error associated
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with frequencies accomplished by the genetic algorithm parameter optimization. This demonstrates the not
surprising fact that like the individual matrix elements, not every mode contributes equally to the cost. As
with the parameter errors, second run yielded a more accurate model by this means of evaluation. Both
estimates are quite accurate in terms of parameter values and open loop eigenvalues for this case.

Estimate 2

Estimate 1

Initial Plant
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Figure 3. Error in Open
Loop Plant Eigenfrequen-
cies for Case A

Case B
The second case begins with an estimated model that has a 25% error in the

stiffness matrix and employs a ten bits per parameter binary encoding mapped
into a range of ±50% for each parameter. Otherwise the parameters are the
same as Case A. Table 2 presents the comparison of parameter estimates which
indicates a significant reduction in error with most parameters, although some
parameter errors are actually increased. Each of the four modes in the initial
model erred by 9.0% while the estimate modes erred by -1.0436%, 0.50%, .027%,
and -0.38%. This case clearly demonstrates how the mode frequencies of the
model can very accurately match the true plant even though the errors in some
evidently insignificant parameters can be quite large.

True Init. Est. Init. % error Est. % error
-625.00 -885.77 -545.06 41.72 -12.79
-62.50 -74.40 -58.29 19.05 -6.73
25.00 35.43 35.07 41.72 40.27
1.00 1.19 1.78 19.05 78.46

156.25 221.44 136.48 41.72 -12.65
156.25 186.01 140.10 19.05 -10.34
-12.50 -17.72 -15.82 41.72 26.55
-14.50 -17.26 -18.35 19.05 26.55
37.50 42.52 32.98 13.38 -12.06
1.00 0.95 1.00 -4.77 -0.43
-1.00 -1.13 -1.57 13.38 56.55

Table 2. True, Initial, and Estimated Parameters for Case B
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Figure 4. Error in Open Loop Plant Eigenfrequencies
for Case C

The final case includes a nonzero and uncertain
damping. This case begins with an estimated model
that has a 35% error in the stiffness matrix and 50%
error in the damping ratio with the binary strings
mapped into a range of ±75% for each parameter.
Otherwise, the parameters are the same as Case B.
Table 3 presents the comparison of parameter esti-
mates while Figure 4 presents a comparison of eigen-
values for Case B. Note that only the A matrix pa-
rameters for the first two genetic algorithm runs are
included while two additional runs are included in
the mode frequency error bar plot. The first esti-
mate is the most accurate of the four runs consid-
ered, each of which demonstrated considerable er-
ror in the frequency of the fourth mode. This case
shows the difficulty encountered with significantly
larger uncertainties in the model. However, stan-
dard local optimization routines are typically much
less robust to modeling errors.5 Future research will
compare the local optimization alone to the genetic
algorithm/local hybrid optimization for this example.
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True Init. Est. 1 Est. 2 Init. % error Est. 1 % error Est. 2 % error
-625 -1033.2 -882.43 -947.57 65.306 41.189 51.611

-68.75 -93.112 -138.64 -148.2 35.436 101.66 115.57
25 41.327 29.48 34.934 65.306 17.92 39.735

1.25 1.7959 1.0125 1.0178 43.673 -19.00 -18.578
156.25 258.29 186.14 233.11 65.306 19.132 49.188
157.81 204.08 147.97 191.96 29.319 -6.2342 21.64
-12.5 -20.663 -16.497 -21.678 65.306 31.978 73.426

-14.625 -18.898 -17.609 -22.569 29.217 20.407 54.321

Table 3. True, Initial, and Estimated A Matrix Parameters for Case C
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